22 research outputs found

    SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates

    Full text link
    The lack of reliable methods for identifying descriptors - the sets of parameters capturing the underlying mechanisms of a materials property - is one of the key factors hindering efficient materials development. Here, we propose a systematic approach for discovering descriptors for materials properties, within the framework of compressed-sensing based dimensionality reduction. SISSO (sure independence screening and sparsifying operator) tackles immense and correlated features spaces, and converges to the optimal solution from a combination of features relevant to the materials' property of interest. In addition, SISSO gives stable results also with small training sets. The methodology is benchmarked with the quantitative prediction of the ground-state enthalpies of octet binary materials (using ab initio data) and applied to the showcase example of predicting the metal/insulator classification of binaries (with experimental data). Accurate, predictive models are found in both cases. For the metal-insulator classification model, the predictive capability are tested beyond the training data: It rediscovers the available pressure-induced insulator->metal transitions and it allows for the prediction of yet unknown transition candidates, ripe for experimental validation. As a step forward with respect to previous model-identification methods, SISSO can become an effective tool for automatic materials development.Comment: 11 pages, 5 figures, in press in Phys. Rev. Material

    Learning physical descriptors for materials science by compressed sensing

    Get PDF
    The availability of big data in materials science offers new routes for analyzing materials properties and functions and achieving scientific understanding. Finding structure in these data that is not directly visible by standard tools and exploitation of the scientific information requires new and dedicated methodology based on approaches from statistical learning, compressed sensing, and other recent methods from applied mathematics, computer science, statistics, signal processing, and information science. In this paper, we explain and demonstrate a compressed-sensing based methodology for feature selection, specifically for discovering physical descriptors, i.e., physical parameters that describe the material and its properties of interest, and associated equations that explicitly and quantitatively describe those relevant properties. As showcase application and proof of concept, we describe how to build a physical model for the quantitative prediction of the crystal structure of binary compound semiconductors

    Analysis of Topological Transitions in Two-dimensional Materials by Compressed Sensing

    Full text link
    Quantum spin-Hall insulators (QSHIs), i.e., two-dimensional topological insulators (TIs) with a symmetry-protected band inversion, have attracted considerable scientific interest in recent years. In this work, we have computed the topological Z2 invariant for 220 functionalized honeycomb lattices that are isoelectronic to functionalized graphene. Besides confirming the TI character of well-known materials such as functionalized stanene, our study identifies 45 yet unreported QSHIs. We applied a compressed-sensing approach to identify a physically meaningful descriptor for the Z2 invariant that only depends on the properties of the material's constituent atoms. This enables us to draw a map of materials, in which metals, trivial insulators, and QSHI form distinct regions. This analysis yields fundamental insights in the mechanisms driving topological transitions. The transferability of the identified model is explicitly demonstrated for an additional set of honeycomb lattices with different functionalizations that are not part of the original set of 220 graphene-type materials used to identify the descriptor. In this class, we predict 74 more novel QSHIs that have not been reported in literature yet

    Artificial Intelligence for High-Throughput Discovery of Topological Insulators: the Example of Alloyed Tetradymites

    Full text link
    Significant advances have been made in predicting new topological materials using high-throughput empirical descriptors or symmetry-based indicators. To date, these approaches have been applied to materials in existing databases, and are severely limited to systems with well-defined symmetries, leaving a much larger materials space unexplored. Using tetradymites as a prototypical class of examples, we uncover a novel two-dimensional descriptor by applying an artificial intelligence (AI) based approach for fast and reliable identification of the topological characters of a drastically expanded range of materials, without prior determination of their specific symmetries and detailed band structures. By leveraging this descriptor that contains only the atomic number and electronegativity of the constituent species, we have readily scanned a huge number of alloys in the tetradymite family. Strikingly, nearly half of which are identified to be topological insulators, revealing a much larger territory of the topological materials world. The present work also attests the increasingly important role of such AI-based approaches in modern materials discovery

    New Tolerance Factor to Predict the Stability of Perovskite Oxides and Halides

    Get PDF
    Predicting the stability of the perovskite structure remains a longstanding challenge for the discovery of new functional materials for many applications including photovoltaics and electrocatalysts. We developed an accurate, physically interpretable, and one-dimensional tolerance factor, {\tau}, that correctly predicts 92% of compounds as perovskite or nonperovskite for an experimental dataset of 576 ABX3ABX_3 materials (X=\textit{X} = O2O^{2-}, FF^-, ClCl^-, BrBr^-, II^-) using a novel data analytics approach based on SISSO (sure independence screening and sparsifying operator). {\tau} is shown to generalize outside the training set for 1,034 experimentally realized single and double perovskites (91% accuracy) and is applied to identify 23,314 new double perovskites (A2A_2BB’\textit{BB'}X6X_6) ranked by their probability of being stable as perovskite. This work guides experimentalists and theorists towards which perovskites are most likely to be successfully synthesized and demonstrates an approach to descriptor identification that can be extended to arbitrary applications beyond perovskite stability predictions

    Controlling the stereochemistry and regularity of butanethiol self-assembled monolayers on Au(111)

    Full text link
    © 2014 American Chemical Society. The rich stereochemistry of the self-assembled monolayers (SAMs) of four butanethiols on Au(111) is described, the SAMs containing up to 12 individual C, S, or Au chiral centers per surface unit cell. This is facilitated by synthesis of enantiomerically pure 2-butanethiol (the smallest unsubstituted chiral alkanethiol), followed by in situ scanning tunneling microscopy (STM) imaging combined with density functional theory molecular dynamics STM image simulations. Even though butanethiol SAMs manifest strong headgroup interactions, steric interactions are shown to dominate SAM structure and chirality. Indeed, steric interactions are shown to dictate the nature of the headgroup itself, whether it takes on the adatom-bound motif RS•Au(0)S•R or involves direct binding of RS• to face-centered-cubic or hexagonal-close-packed sites. Binding as RS• produces large, organizationally chiral domains even when R is achiral, while adatom binding leads to rectangular plane groups that suppress long-range expression of chirality. Binding as RS• also inhibits the pitting intrinsically associated with adatom binding, desirably producing more regularly structured SAMs

    Ligand-Conformation Energy Landscape of Thiolate-Protected Gold Nanoclusters

    No full text
    Although several thiolate-protected Au nanoclusters have yielded to total-structure determination, the ligand-conformation energy landscapes and how they affect the relative stability of the whole clusters are not well understood. In this work, we employ a force-field-based approach to perform the ligand-conformation search for isolated thiolate-protected Au nanoclusters using Au<sub>25</sub>(SR)<sub>18</sub> (R = C<sub>2</sub>H<sub>4</sub>Ph) as an example. We find that the ligand-conformation energy landscape of Au<sub>25</sub>(SC<sub>2</sub>H<sub>4</sub>Ph)<sub>18</sub> comprises multiple low-energy funnels of similar stability instead of a single global minimum. In fact, we find slightly more stable conformations of isolated Au<sub>25</sub>(SC<sub>2</sub>H<sub>4</sub>Ph)<sub>18</sub> than those observed in the experiment from a crystalline state, indicating that specific environments such as crystal packing and solvents may all affect the ligand conformation. This work reveals the role of ligand conformation in the cluster energy landscape

    Distilling Accurate Descriptors from Multi-Source Experimental Data for Discovering Highly Active Perovskite OER Catalysts

    Full text link
    Perovskite oxides are promising catalysts for oxygen evolution reaction (OER), yet the huge chemical space remains largely unexplored due to the lack of effective approaches. Here, we report the distilling of accurate descriptors from multi-source experimental data for accelerated catalysts discovery by using the new method SCMT-SISSO that overcomes the challenge of data inconsistency between different sources. While many previous descriptors for the catalytic activity were proposed based on respective small datasets, we obtained the new 2D descriptor (d_B, n_B) based on 13 experimental datasets collected from different publications and the SCMT-SISSO. Great universality and predictive accuracy, and the bulk-surface correspondence, of this descriptor have been demonstrated. With this descriptor, hundreds of unreported candidate perovskites with activity greater than the benchmark catalyst Ba0.5Sr0.5Co0.8Fe0.2O3 were identified from a large chemical space. Our experimental validations on five candidates confirmed the three highly active new perovskite catalysts SrCo0.6Ni0.4O3, Rb0.1Sr0.9Co0.7Fe0.3O3, and Cs0.1Sr0.9Co0.4Fe0.6O3
    corecore